Abstract

The average path length (APL) of a network is an important metric that provides insights on the interconnectivity in a network and how much time and effort would be required for search and navigation on that network. However, the estimation of APL is time-consuming as its computational complexity scales nonlinearly with the network size. In this paper, we develop a computationally efficient random node pair sampling algorithm that enables the estimation of APL with a specified precision and confidence. The proposed sampling algorithms provide a speed-up factor ranging from 240-750 for networks with more than 100,000 nodes. We also find that the computational time required for estimation APL does not necessarily increase with the network size; it shows an inverted U shape instead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.