Abstract

Nemhauser and Trotter [12] proposed a certain easily-solved linear program as a relaxation of the node packing problem. They showed that any variables receiving integer values in an optimal solution to this linear program also take on the same values in an optimal solution to the (integer) node packing problem. Let π be the property of graphs defined as follows: a graph G has property π if and only if there is a unique optimal solution to the linear-relaxation problem, and this solution is completely fractional. If a graph G has property π then no information about the node packing problem on G is gained by solving the linear relaxation. We calculate the asymptotic probability that a certain type of ‘sparse’ random graph has property π, as the number of its nodes tends to infinity. Let m be a fixed positive integer, and consider the following random graph on the node set {1,2 …, n}). We join each node, j say, to exactly m other nodes chosen randomly with replacement, by edges oriented away from j; we denote by G n ( m) the undirected graph obtained by deleting all orientations and allowing all parallel edges to coalesce. We show that, as n → ∞, P(G n(m) has property π)→ 0 if m = 1, 1 if m ⩾ 3, and we conjecture that P(G n(2) has property π)→ (1–2e −2) 1 2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.