Abstract
We introduce the concept of Random Multi-Overlap Structure (RaMOSt) as a generalization of the one introduced by Aizenman, Sims and Starr for non-diluted spin glasses. We use such concept to find generalized bounds for the free energy of the Viana-Bray model of diluted spin glasses and to formulate and prove the Extended Variational Principle that implicitly provides the free energy of the model. Then we exhibit a theorem for the limiting RaMOSt, analogous to the one found by F. Guerra for the Sherrington–Kirkpatrick model, that describes some stability properties of the model. Last, we show how our technique can be used to prove the existence of thermodynamic limit of the free energy. The present work paves the way to a revisited Parisi theory for diluted spin systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.