Abstract

In this paper telegraph processes on geodesic lines of the Poincaré half-space and Poincaré disk are introduced and the behavior of their hyperbolic distances examined. Explicit distributions of the processes are obtained and the related governing equations derived. By means of the processes on geodesic lines, planar random motions (with independent components) in the Poincaré half-space and disk are defined and their hyperbolic random distances studied. The limiting case of one-dimensional and planar motions together with their hyperbolic distances is discussed with the aim of establishing connections with the well-known stochastic representations of hyperbolic Brownian motion. Extensions of motions with finite velocity to the three-dimensional space are also hinted at, in the final section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.