Abstract

A theoretical study is presented for the random aspect of an optical vortex inherent in the nonlinear birefringent Kerr effect, which is called the optical spin vortex. We start with the two-component nonlinear Schrödinger equation. The vortex is inherent in the spin texture caused by an anisotropy of the dielectric tensor, for which the role of spin is played by the Stokes vector (or pseudospin). The evolutional equation is derived for the vortex center coordinate using the effective Lagrangian of the pseudospin field. This is converted to the Langevin equation in the presence of the fluctuation together with the dissipation. The corresponding Fokker-Planck equation is derived and analytically solved for a particular form of the birefringence inspired from the Faraday effect. The main consequence is that the relaxation distance for the distribution function is expressed by the universal constant in the Faraday effect and the size of optical vortex. The result would provide a possible clue for future experimental study in polarization optics from a stochastic aspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.