Abstract

The transport properties of dense random media such as rutile powder layers and polyball suspensions are analyzed in visible and near infrared on the basis of experimental data on coherent backscattering, diffuse transmittance, and low-coherence interferometry. The developed technique of retrieval of the transport parameters of examined scattering media allows the evaluation of the transport mean free path l* and the effective refractive index n(ef) of the medium without a priori knowledge of the optical properties of the scattering particles. It is found that with decreasing wavelength lambda(0) the value of localization parameter 2pin(ef)l*/lambda(0) of the studied rutile samples abruptly drops and approaches approximately 2.6 at 473 nm. This peculiarity is caused by the very large scattering efficiency of scatterers in the vicinity of the first Mie resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.