Abstract
Space-time adaptive processing (STAP) is a fundamental topic in airborne radar applications due to its clutter suppression ability. Reduced-dimension (RD)-STAP can release the requirement of the number of training samples and reduce the computational load from traditional STAP, which attracts much attention. However, under the situation that training samples are severely deficient, RD-STAP will become poor like the traditional STAP. To enhance RD-STAP performance in such cases, this paper develops a novel RD-STAP algorithm using random matrix theory (RMT), RMT-RD-STAP. By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, thus producing the optimal STAP weight vector. Specifically, the clutter-related eigenvalues are estimated according to the clutter-related sample eigenvalues via RMT, and the noise-related eigenvalue is optimally selected from the noise-related sample eigenvalues. It is found that RMT-RD-STAP significantly outperforms the RD-STAP algorithm when the RMB rule cannot be satisfied. Theoretical analyses and numerical results demonstrate the effectiveness and the performance advantages of the proposed RMT-RD-STAP algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.