Abstract

We apply random matrix theory (RMT) to an empirically measured financial correlation matrix, C, and show that this matrix contains a large amount of noise. In order to determine the sensitivity of the spectral properties of a random matrix to noise, we simulate a set of data and add different volumes of random noise. Having ascertained that the eigenspectrum is independent of the standard deviation of added noise, we use RMT to determine the noise percentage in a correlation matrix based on real data from S&P500. Eigenvalue and eigenvector analyses are applied and the experimental results for each of them are presented to identify qualitatively and quantitatively different spectral properties of the empirical correlation matrix to a random counterpart. Finally, we attempt to separate the noisy part from the non-noisy part of C. We apply an existing technique to cleaning C and then discuss its associated problems. We propose a technique of filtering C that has many advantages, from the stability point of view, over the existing method of cleaning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.