Abstract
We show that results from the theory of random matrices are potentially of great interest when trying to understand the statistical structure of the empirical correlation matrices appearing in the study of multivariate financial time series. We find a remarkable agreement between the theoretical prediction (based on the assumption that the correlation matrix is random) and empirical data concerning the density of eigenvalues associated to the time series of the different stocks of the S&P500 (or other major markets). Finally, we give a specific example to show how this idea can be sucessfully implemented for improving risk management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.