Abstract
We show that the lowest part of the eigenvalue density of the staggered fermion operator in lattice QCD_3 at small lattice coupling constant beta has exactly the same shape as in QCD_4. This observation is quite surprising, since universal properties of the QCD_3 Dirac operator are expected to be described by a non-chiral matrix model. We show that this effect is related to the specific nature of the staggered fermion discretization and that the eigenvalue density evolves towards the non-chiral random matrix prediction when beta is increased and the continuum limit is approached. We propose a two-matrix model with one free parameter which interpolates between the two limits and very well mimics the pattern of evolution with beta of the eigenvalue density of the staggered fermion operator in QCD_3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.