Abstract

Recent theoretical studies of chaotic scattering have encounted ensembles of random matrices in which the eigenvalue probability density function contains a one-body factor with an exponent proportional to the number of eigenvalues. Two such ensembles have been encounted: an ensemble of unitary matrices specified by the so-called Poisson kernel, and the Laguerre ensemble of positive definite matrices. Here we consider various properties of these ensembles. Jack polynomial theory is used to prove a reproducing property of the Poisson kernel, and a certain unimodular mapping is used to demonstrate that the variance of a linear statistic is the same as in the Dyson circular ensemble. For the Laguerre ensemble, the scaled global density is calculated exactly for all even values of the parameter $\beta$, while for $\beta = 2$ (random matrices with unitary symmetry), the neighbourhood of the smallest eigenvalue is shown to be in the soft edge universality class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.