Abstract

Recently we considered a class of random matrices obtained by choosing distinct codewords at random from linear codes over finite fields and proved that under some natural algebraic conditions their empirical spectral distribution converges to Wigner's semicircle law as the length of the codes goes to infinity. One of the conditions is that the dual distance of the codes is at least 5. In this paper, employing more advanced techniques related to Stieltjes transform, we show that the dual distance being at least 5 is sufficient to ensure the convergence, and the convergence rate is of the form $n^{-\beta}$ for some $0 < \beta < 1$, where $n$ is the length of the code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.