Abstract
We study the effect of random magnetic fields in the spin-flavor precession of solar neutrinos in a three generation context, when a non-vanishing transition magnetic moment is assumed. While this kind of precession is strongly constrained when the magnetic moment involves the first family, such constraints do not apply if we suppose a transition magnetic moment between the second and third families. In this scenario we can have a large non-electron anti-neutrino flux arriving on Earth, which can lead to some interesting phenomenological consequences, as, for instance, the suppression of day-night asymmetry. We have analyzed the high energy solar neutrino data and the KamLAND experiment to constrain the solar mixing angle, and solar mass difference, and we have found a larger shift of allowed values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.