Abstract

Spatial and spectral properties of random lasing with spatially nonuniform gain were investigated in two-dimensional (2D) disordered medium. The pumping light was described by an individual electric field and coupled into the rate equations by using the polarization equation. The spatially nonuniform gain comes from the multiple scattering of this pumping light. Numerical simulation of the random system with uniform and nonuniform gain were performed both in weak and strong scattering regime. In weak scattering sample, all the lasing modes correspond to those of the passive system whether the nonuniform gain is considered. However, in strong scattering regime, new lasing modes appear with nonuniform gain as the localization area changes. Our results show that it is more accurate to describe the random lasing behavior with introducing the nonuniform gain origins from the multiple light scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call