Abstract

Nanocrystalline ZnO powders can act as gain and scattering medium in a random laser where the light emission can be strongly amplified. In this work, we compare the luminescence properties of samples with different particle sizes in the regime of linear and nonlinear optics. In the high-excitation regime random lasing is observed in all samples. Here, the lasing threshold depends strongly on the size distribution in the ensemble. Additional characterization of the samples has been done by determining the absolute quantum efficiency of the radiative processes in the powder. The values are in the 10% range and the near-edge luminescence is strongly influenced by the particle sizes. We show that by annealing the nanocrystals coalesce to larger polycrystalline grains, which results in a new emission band at 3.333 eV due to the grain boundaries. Furthermore, it is found that in the annealed samples the threshold for random lasing could be considerably decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.