Abstract

Solution-based perovskite nanoparticles have been intensively studied in past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between the solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After the synthesis from solution, discrete lasing peaks have been observed from the optically pumped perovskites without any well-defined cavity boundaries. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 uJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered as random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call