Abstract
A random narrow-linewidth lasing at a wavelength of 976 nm was obtained in an ytterbium-doped germanophosphosilicate fiber with an array of weakly reflecting fiber Bragg gratings (FBGs). A random laser cavity was formed by implementing the standard phase mask method of FBG inscription directly during the fiber drawing process. The UV radiation pulses of a KrF excimer laser (248 nm wavelength) synchronized with the fiber drawing speed were used to fabricate the in-fiber array of hundreds of similar FBGs. The developed laser’s slope efficiency in the backward-pumping scheme was measured as high as 33%. The stable continuous-wave operation mode of the laser was detected. The magnitude of the laser power fluctuations depends linearly on the cavity length. The random laser cavity modified with a single highlyreflected (90%) FBG demonstrates significantly better power stability and higher slope efficiency than the same one without an FBG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.