Abstract

Many ring polymer systems of physical and biological interest exhibit both pronounced topological effects and nontrivial self-similarity, but the relationship between these two phenomena has not yet been clearly established. Here, we use theory and simulation to formulate such a connection by studying a fundamental topological property—the random knotting probability—for ring polymers with varying fractal dimension, df. Using straightforward scaling arguments, we generalize a classic mathematical result, showing that the probability of a trivial knot decays exponentially with chain size, N, for all fractal dimensions: P0(N) ∝ exp(−N/N0). However, no such simple considerations can account for the dependence of the knotting length, N0, on df, necessitating a more involved analytical calculation. This analysis reveals a complicated double-exponential dependence, which is well supported by numerical data. By contrast, functional forms typical of simple scaling theories fail to adequately describe the observations. These findings are equally valid for two-dimensional ring polymer systems, where “knotting” is defined as the intersection of any two segments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.