Abstract

The purpose of this article is to propose a new method to define and calculate path integrals over metrics on a Kähler manifold. The main idea is to use finite dimensional spaces of Bergman metrics, as an approximation to the full space of Kähler metrics. We use the theory of large deviations to decide when a sequence of probability measures on the spaces of Bergman metrics tends to a limit measure on the space of all Kähler metrics. Several examples are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.