Abstract

A simple yet effective multilabel learning method, called label powerset (LP), considers each distinct combination of labels that exist in the training set as a different class value of a single-label classification task. The computational efficiency and predictive performance of LP is challenged by application domains with large number of labels and training examples. In these cases, the number of classes may become very large and at the same time many classes are associated with very few training examples. To deal with these problems, this paper proposes breaking the initial set of labels into a number of small random subsets, called labelsets and employing LP to train a corresponding classifier. The labelsets can be either disjoint or overlapping depending on which of two strategies is used to construct them. The proposed method is called RAkEL (RAndom k labELsets), where k is a parameter that specifies the size of the subsets. Empirical evidence indicates that RAkEL manages to improve substantially over LP, especially in domains with large number of labels and exhibits competitive performance against other high-performing multilabel learning methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call