Abstract
We study the microstructural glass transition in diblock-copolymer melts using a thermodynamic replica approach. Our approach performs an expansion in terms of the natural smallness parameter--the inverse of the scaled degree of polymerization N--which allows us to systematically study the approach to mean-field behavior as the degree of polymerization increases. We find that in the limit of infinite chain length, both the onset of glassiness and the vitrification transition (Kauzmann temperature) collapse to the mean-field spinodal, suggesting that the spinodal can be regarded as the mean-field signature for glass transitions in this class of microphase-separating system. We also study the order-disorder transition (ODT) within the same theoretical framework; in particular, we include the leading-order fluctuation corrections due to the cubic interaction in the coarse-grained Hamiltonian, which has been ignored in previous studies of the ODT in block copolymers. We find that the cubic term stabilizes both the ordered (body-centered-cubic) phase and the glassy state relative to the disordered phase. In melts of symmetric copolymers the glass transition always occurs after the order-disorder transition (below the ODT temperature), but for asymmetric copolymers, it is possible for the glass transition to precede the ordering transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.