Abstract

Magnetization, DC and AC bulk susceptibility of the $S$=1 Haldane chain system doped with electronic holes, Y$_{2-x}$Ca$_x$BaNiO$_5$ (0$\leq$x$\leq$0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, $\chi (T)$$\sim $ $T$$^{-\alpha}$, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at $T$$_g$ = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.