Abstract
There are given sufficient conditions under which mixtures of dilations of Lévy spectral measures, on a Hilbert space, are Lévy measures again. We introduce some random integrals with respect to infinite-dimensional Lévy processes, which in turn give some integral mappings. New classes (convolution semigroups) are introduced. One of them gives an unexpected relation between the free (Voiculescu) and the classical Lévy–Khintchine formulae while the second one coincides with tempered stable measures (Mantegna and Stanley) arisen in statistical physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.