Abstract
Automated GUI testing based on behavioral model is one of the most efficient testing approaches. By mining user usage, test scenarios can be generated based on statistical models such as Markov chain. However, these works require static analysis before starting the exploration which requires too much prerequisites and time. To address these challenges, we propose a behavioral-based GUI testing approach for mobile applications that achieves faster and higher coverage. The proposed approach does not conduct static analysis. It creates a behavioral model from usage logs by applying a statistical model. The events within the behavioral model are mapped to GUI components in a GUI tree. Finally, it updates the model dynamically to increase the probability of an event that rarely or never occurs when users use the application. The proposed approach was evaluated on four open-source Android applications, and compared with the state-of-the-art tools and manual testing. The main evaluation criteria are code coverage and ability to find errors. The proposed approach performed better than the current state-of-the-art automated testing tools in most aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Knowledge Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.