Abstract

Many engineering systems can perform their intended tasks with various levels of performance, which are modeled as multi-state systems (MSS) for system availability and reliability assessment problems. Uncertainty is an unavoidable factor in MSS modeling, and it must be effectively handled. In this work, we extend the traditional universal generating function (UGF) approach for multi-state system (MSS) availability and reliability assessment to account for both aleatory and epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random fuzzy variables (RFVs) in the approach. Second, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle. Finally, an efficient algorithm is designed to extract probability boxes ( p-boxes) from the system HUGF, which allow quantifying different levels of imprecision in system availability and reliability estimation. The HUGF approach is demonstrated with a numerical example, and applied to study a distributed generation system, with a comparison to the widely used Monte Carlo simulation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.