Abstract

In conjunction with the formulation of random functions, a family of renewed spectral representation schemes is proposed. The selected random function serves as a random constraint correlating the random variables included in the spectral representation schemes. The objective stochastic process can thus be completely represented by a dimension-reduced spectral model with just few elementary random variables, through defining the high-dimensional random variables of conventional spectral representation schemes (usually hundreds of random variables) into the low-dimensional orthogonal random functions. To highlight the advantages of this scheme, orthogonal trigonometric functions with one and two random variables are constructed. Representative-point set of the dimension-reduced spectral model is derived by employing the probability-space partition techniques. The complete set with assigned probabilities of points gains a low-number-sample stochastic process. For illustrative purposes, the stochastic modeling of seismic acceleration processes is proceeded, of which the stationary and non-stationary cases are investigated. It is shown that the spectral acceleration of simulated processes matches well with the target spectrum. Stochastic seismic response analysis, moreover, and reliability assessment of a framed structure with Bouc-Wen behaviors are carried out using the probability density evolution method. Numerical results reveal the applicability and efficiency of the proposed simulation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.