Abstract

We propose a general hurdle methodology to model a response from a homogeneous or a non-homogeneous Poisson process with excess zeros, based on two forests. The first forest in the two parts model is used to estimate the probability of having a zero. The second forest is used to estimate the Poisson parameter(s), using only the observations with at least one event. To build the trees in the second forest, we propose specialized splitting criteria derived from the zero truncated homogeneous and non-homogeneous Poisson likelihood. The particular case of a homogeneous process is investigated in details to stress out the advantages of the proposed method over the existing ones. Simulation studies show that the proposed methods perform well in hurdle (zero-altered) and zero-inflated settings, for both homogeneous and non-homogeneous processes. We illustrate the use of the new method with real data on the demand for medical care by the elderly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.