Abstract

During pandemic periods, there is an intense flow of patients to hospitals. Depending on the disease, many patients may require hospitalization. In some cases, these patients must be taken to intensive care units and emergency interventions must be performed. However, finding a sufficient number of hospital beds or intensive care units during pandemic periods poses a big problem. In these periods, fast and effective planning is more important than ever. Another problem experienced during pandemic periods is the burial of the dead in case the number of deaths increases. This is also a situation that requires due planning. We can learn some lessons from Covid 19 pandemic and be prepared for the future ones. In this paper, statistical properties of the daily cases and daily deaths in Turkey, which is one of the most affected countries by the pandemic in the World, are studied. It is found that the characteristics are nonstationary. Then, random forest regression is applied to predict Covid-19 daily cases and deaths. In addition, seven other machine learning models, namely bagging, AdaBoost, gradient boosting, XGBoost, decision tree, LSTM and ARIMA regressors are built for comparison. The performance of the models are measured using accuracy, coefficient of variation, root-mean-square score and relative error metrics. When random forest regressors are employed, test data related to daily cases are predicted with an accuracy of 92.30% and with an r2 score of 0.9893. Besides, daily deaths are predicted with an accuracy of 91.39% and with an r2 score of 0.9834. The closest rival in predictions is the bagging regressor. Nevertheless, the results provided by this algoritm changed in different runs and this fact is shown in the study, as well. Comparisons are based on test data. Comparisons with the earlier works are also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call