Abstract
Ambient ozone (O3) concentrations have shown an upward trend in China and its health hazards have also been recognized in recent years. High-resolution exposure data based on statistical models are needed. Our study aimed to build high-performance random forest (RF) models based on training data from 2013 to 2017 in the Beijing-Tianjin-Hebei (BTH) region in China at a 0.01°×0.01° resolution, and estimated daily maximum 8h average O3 (O3-8hmax) concentration, daily average O3 (O3-mean) concentration, and daily maximum 1h O3 (O3-1hmax) concentration from 2010 to 2017. Model features included meteorological variables, chemical transport model output variables, geographic variables, and population data. The test-R2 of sample-based O3-8hmax, O3-mean and O3-1hmax models were all greater than 0.80, while the R2 of site-based and date-based model were 0.68-0.87. From 2010 to 2017, O3-8hmax, O3-mean, and O3-1hmax concentrations in the BTH region increased by 4.18μg/m3, 0.11μg/m3, and 4.71μg/m3, especially in more developed regions. Due to the influence of weather conditions, which showed high contribution to the model, the long-term spatial distribution of O3 concentrations indicated a similar pattern as altitude, where high concentration levels were distributed in regions with higher altitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.