Abstract

Peatlands are a critical component of the global carbon cycle. Within Canada, the Hudson Bay Lowlands (HBL) has accumulated an estimated 33 Gt of carbon as peat because of a small but persistent difference between gross primary productivity (GPP) and ecosystem respiration over millennia. However, the impacts of disturbance and climate change on GPP are difficult to monitor across the HBL due to its vast size and remote location. This study evaluates the potential for random forest regression models to estimate GPP at five HBL eddy covariance flux monitoring sites using only optical data from MODIS (500 m, 8 day) or harmonized Landsat/Sentinel (HLS; 30 m, 16 day or more frequent). The results show that spatial resolution has less impact on modeled daily GPP compared to temporal resolution across model configurations. Using MODIS data, individual sites’ daily GPP could be simulated with minimal bias, R2 up to 0.89 and mean absolute error as low as 0.37 g C m−2 day−1. For annual GPP, MODIS (R2 = 0.84; mean absolute error 40.5 g C m−2 year−1) also outperformed the HLS models (R2 = 0.46; mean absolute error 86.4 g C m−2 year−1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.