Abstract
A classification scheme for myoelectric control systems (MCS) cannot mimic complex hand movements. This paper presents simultaneous and proportional MCS by estimating the angles of fourteen finger joints using time-domain feature extraction and random forest. The experimental results show that the best feature was the root mean square (RMS). Furthermore, the random forest attained an average coefficient of determination (R2) of 0.85 compared to other regressors which perform below 0.75. The ANOVA tests indicated that the performance of the proposed system was significantly different. Therefore, the proposed system will be the best option for real-time MCS applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.