Abstract

The selection of auxiliary variables is an important first step in appropriately implementing missing data methods such as full information maximum likelihood (FIML) estimation or multiple imputation. However, practical guidelines and statistical tests for selecting useful auxiliary variables are somewhat lacking, leading to potentially biased estimates. We propose the use of random forest analysis and lasso regression as alternative methods to select auxiliary variables, particularly in situations in which the missing data pattern is nonlinear or otherwise complex (i.e., interactive relationships between variables and missingness). Monte Carlo simulations demonstrate the effectiveness of random forest analysis and lasso regression compared to traditional methods (t-tests, Little's MCAR test, logistic regressions), in terms of both selecting auxiliary variables and the performance of said auxiliary variables when incorporated in an analysis with missing data. Both techniques outperformed traditional methods, providing a promising direction for improvement of practical methods for handling missing data in statistical analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.