Abstract

Aquatic toxicity of pesticides can result in poisoning of many non-target organisms, of which various fishes are the most prominent one. It is a challenge to predict the toxicity (LC50) classes of organic pesticides to various fish species from global QSAR models with a larger applicability domain. In this paper, by applying the random forest (RF) algorithm for a two-class problem, only eight molecular descriptors were used to develop a quantitative structure–activity relationship (QSAR) model for 1106 toxicity data (96 h, LC50) of organic pesticides to various fish species including Oncorhynchus mykiss, Lepomis macrochirus, Pimephales promelas, Brachydanio rerio, Cyprinodon, Cyprinus carpio, etc. By the prediction of the optimal RF Model I (ntree =280, mtry = 3 and nodesize = 5), the training set (885 organic pesticides) has the prediction accuracies of 99.6% for Class 1 (LC50 ≤ 10) and 96.7% for Class 2 (LC50 > 10); the test set (221 organic pesticides) has the accuracies being 90.8% for Class 1 and 91.2% for Class 2. The optimal RF Model I is satisfactory compared with other QSAR model reported in the literature, although its descriptor subset is small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call