Abstract

We have performed measurements of the critical neutron scattering on CsCo0.83Mg0.17Br3, a dilute stacked triangular lattice (STL) Ising antiferromagnet (AF). A two component line shape associated with the critical fluctuations appears at a temperature coincident with T(N1) observed in pure CsCoBr3. Such scattering is indicative of fluctuations in prototypical random field Ising model (RFIM) systems. The random field domain state arises in this case due to geometrical frustration within the STL Ising AF, which gives rise to a three sublattice Néel state, in which one sublattice is disordered. Magnetic vacancies nucleate AF domains in which the vacancies reside on the disordered sublattice thereby generating a RFIM state in the absence of an applied magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call