Abstract

In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation (thinning). In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets—that has been neglected so far—are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k–ϵ turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible. Numerical results are discussed for a simplified melt-blowing model consisting of a system of random ordinary differential equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call