Abstract
We present a new modeling paradigm for optimization that we call random field optimization. Random fields are a powerful modeling abstraction that aims to capture the behavior of random variables that live on infinite-dimensional spaces (e.g., space and time) such as stochastic processes (e.g., time series, Gaussian processes, and Markov processes), random matrices, and random spatial fields. This paradigm involves sophisticated mathematical objects (e.g., stochastic differential equations and space-time kernel functions) and has been widely used in neuroscience, geoscience, physics, civil engineering, and computer graphics. Despite of this, however, random fields have seen limited use in optimization; specifically, existing optimization paradigms that involve uncertainty (e.g., stochastic programming and robust optimization) mostly focus on the use of finite random variables. This trend is rapidly changing with the advent of statistical optimization (e.g., Bayesian optimization) and multi-scale optimization (e.g., integration of molecular sciences and process engineering). Our work extends a recently-proposed abstraction for infinite-dimensional optimization problems by capturing more general uncertainty representations. Moreover, we discuss solution paradigms for this new class of problems based on finite transformations and sampling, and identify open questions and challenges.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.