Abstract

The objective of this work is to explore the possibility of corrosion degradation modelling of thin steel plate specimens with the use of random field approach. The mechanical properties are obtained via the nonlinear Finite Element Analysis with the use of an explicit dynamic solver. The fully nonlinear material model is adopted to obtain the proper stress-strain response. Sensitivity analysis considering the main statistical descriptors of the random field is performed. The results of the analysis are validated with the available experimental data showing a good agreement for lower levels of Degree of Degradation and significant deviations for severely corroded specimens. The analysis shows that the irregularities in the corroded plate surface are one of the main reason for the mechanical properties reduction. Random field modelling revealed to be a swift and practical tool for representing the corroded surfaces in steel structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call