Abstract
We studied the existence of a random exponential attractor in the weighted space of infinite sequences for second-order nonautonomous stochastic lattice system with linear multiplicative white noise. Firstly, we present some sufficient conditions for the existence of a random exponential attractor for a continuous cocycle defined on a weighted space of infinite sequences. Secondly, we transferred the second-order stochastic lattice system with multiplicative white noise into a random lattice system without noise through the Ornstein–Uhlenbeck process, whose solutions generate a continuous cocycle on a weighted space of infinite sequences. Thirdly, we estimated the bound and tail of solutions for the random system. Fourthly, we verified the Lipschitz continuity of the continuous cocycle and decomposed the difference between two solutions into a sum of two parts, and carefully estimated the bound of the norm of each part and the expectations of some random variables. Finally, we obtained the existence of a random exponential attractor for the considered system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.