Abstract

A formalism is presented for analytically obtaining the probability density function, (P_{n}(s)), for the random distance (s) between two random points in an (n)-dimensional spherical object of radius (R). Our formalism allows (P_{n}(s)) to be calculated for a spherical (n)-ball having an arbitrary volume density, and reproduces the well-known results for the case of uniform density. The results find applications in stochastic geometry, computational science, molecular biological systems, statistical physics, astrophysics, condensed matter physics, nuclear physics, and elementary particle physics. As one application of these results, we propose a new statistical method obtained from our formalism to study random number generators in (n)-dimensions used in Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.