Abstract
We study the random deposition model with power-law distributed noise and rare-event dominated fluctuation. In this model instead of particles with unit sizes, rods with variable lengths are deposited onto the substrate. The length of each rod is chosen from a power-law distribution P(l)∼l^{-(μ+1)}, and the site at which each rod is deposited is chosen randomly. The results show that for μ<μ_{c}=3 the log-log diagram of roughness, W(t), versus deposition time, t, increases as a step function, where the roughness in each interval acts as W_{loc}(t)≈t^{β_{loc}}. The local growth exponent, β_{loc}, is zero for μ=1. By increasing the μ exponent, the value of β_{loc} is increased. It tends to the growth exponent of the random distribution model with Gaussian noise, β=1/2, at μ_{c}=3. The fractal analysis of the height fluctuations for this model was performed by multifractal detrended fluctuation analysis algorithm. The results show multiaffinity behavior for the height fluctuations at μ<μ_{c} and the multiaffinity strength is greater for smaller values of the μ exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.