Abstract

The synthesis of ethylene vinyl halide (EVH) copolymers containing fluorine, chlorine, and bromine via the ADMET copolymerization of halogen containing α−ω-dienes with 1,9-decadiene is presented. The statistically random nature of the copolymers was established from their 13C NMR spectra. Thermal analysis via differential scanning calorimetry points to a distinct difference in the crystallization behavior of these random copolymers when compared to their compositionally matched precise analogues. In this case, sharp melting peaks typical of homopolymer-like crystallization of the precise analogues are no longer observed in Cl- and Br-based random copolymers and are replaced by broader peaks indicating a mechanism based on the selection of long crystallizable sequences. The results presented herein thus point to the utility of these random ADMET copolymers as suitable models for industrially relevant PE copolymers based on the perfectly linear, defect-free, and statistically random copolymer composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.