Abstract

We define natural probability measures on finite multicurves (finite collections of pairwise disjoint simple closed curves) on curved surfaces. These measures arise as universal scaling limits of probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric, in the limit as the mesh size tends to zero. These in turn are defined from the Laplacian determinant and depend on the choice of a unitary connection on the surface. Wilson’s algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.