Abstract

We investigate the spatiotemporal dynamics of a network of coupled chaotic maps, with varying degrees of randomness in coupling connections. While strictly nearest neighbor coupling never allows spatiotemporal synchronization in our system, randomly rewiring some of those connections stabilizes entire networks at x*, where x* is the strongly unstable fixed point solution of the local chaotic map. In fact, the smallest degree of randomness in spatial connections opens up a window of stability for the synchronized fixed point in coupling parameter space. Further, the coupling epsilon(bifr) at which the onset of spatiotemporal synchronization occurs, scales with the fraction of rewired sites p as a power law, for 0.1<p<1. We also show that the regularizing effect of random connections can be understood from stability analysis of the probabilistic evolution equation for the system, and approximate analytical expressions for the range and epsilon(bifr) are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.