Abstract

We point out that a classical analog of the Sachdev-Ye-Kitaev (SYK) model, a solvable model of quantum many-body chaos, was studied long ago in the turbulence literature. Motivated by the Navier-Stokes equationin the turbulent regime and the nonlinear Schrödinger equationdescribing plasma turbulence, in which there is mixing between many different modes, the random coupling model has a Gaussian-random coupling between any four of a large number N of modes. The model was solved in the 1960s, before the introduction of large-N path-integral techniques, using a method referred to as the direct interaction approximation. We use the path integral to derive the effective action for the model. The large-N saddle gives an integral equationfor the two-point function, which is very similar to the corresponding equationin the SYK model. The connection between the SYK model and the random coupling model may, on the one hand, provide new physical contexts in which to realize the SYK model and, on the other hand, suggest new models of turbulence and techniques for studying them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.