Abstract

In this paper we present a quantum mechanical theory of multiphoton photodissociation of large, collision-free, molecules, which rests on the notion that the radiative coupling terms between adjacent sets of congested bound molecular states in the quasicontinuum exhibit a wide variation both in terms of magnitude and of sign. Invoking the rotating-wave approximation, neglecting spontaneous infrared decay, and assuming that near-resonant radiative coupling prevails, the equations of motion were solved within the framework of the random radiative coupling model for the radiative interactions in the quasicontinuum. In the low energy range (range I) the equations of motion for the amplitudes are determined by the effective Hamiltonian formalism, while in the quasicontinuum (range II) the populations are governed by kinetic equations for sequential reversible decay. All the features of coherent excitation are preserved for range I, while in range II intramolecular erosion of phase coherence effects prevails. This model provides a set of reasonable predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call