Abstract

In this paper, we study the minimization of ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> regularized optimization problems, where the objective function is composed of a smooth convex function and the ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> regularization. We analyze optimality conditions for this nonconvex problem which lead to the separation of local minima into two restricted classes that are nested and around the set of global minima. Based on these restricted classes of local minima, we devise two new random coordinate descent type methods for solving these problems. In particular, we analyze the convergence properties of an iterative hard thresholding based random coordinate descent algorithm for which we prove that any limit point is a local minimum from the first restricted class of local minimizers. Then, we analyze the convergence of a random proximal alternating minimization method and show that any limit point of this algorithm is a local minima from the second restricted class of local minimizers. We also provide numerical experiments which show the superior behavior of our methods in comparison with the usual iterative hard thresholding algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.