Abstract
Computing the value of a high-dimensional integral can often be reduced to the problem of finding the ratio between the measures of two sets. Monte Carlo methods are often used to approximate this ratio, but often one set will be exponentially larger than the other, which leads to an exponentially large variance. A standard method of dealing with this problem is to interpolate between the sets with a sequence of nested sets where neighboring sets have relative measures bounded above by a constant. Choosing such a well-balanced sequence can rarely be done without extensive study of a problem. Here a new approach that automatically obtains such sets is presented. These well-balanced sets allow for faster approximation algorithms for integrals and sums using fewer samples, and better tempering and annealing Markov chains for generating random samples. Applications, such as finding the partition function of the Ising model and normalizing constants for posterior distributions in Bayesian methods, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.