Abstract

We study the quenched invariance principle for random conductance models with long range jumps on Zd, where the transition probability from x to y is, on average, comparable to |x−y|−(d+α) with α∈(0,2) but is allowed to be degenerate. Under some moment conditions on the conductance, we prove that the scaling limit of the Markov process is a symmetric α-stable Lévy process on Rd. The well-known corrector method in homogenization theory does not seem to work in this setting. Instead, we utilize probabilistic potential theory for the corresponding jump processes. Two essential ingredients of our proof are the tightness estimate and the Hölder regularity of caloric functions for nonelliptic α-stable-like processes on graphs. Our method is robust enough to apply not only for Zd but also for more general graphs whose scaling limits are nice metric measure spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.