Abstract

This PhD thesis is organized as follows. In the first two chapters I will review some basic notions of statistical physics of disordered systems, such as random graph theory, the mean-field approximation, spin glasses and combinatorial optimization. The replica method will also be introduced and applied to the Sherrington-Kirkpatrick model, one of the simplest mean-field models of spin-glasses. The second part of the thesis deals with mean-field combinatorial optimization problems. The attention will be focused on the study of finite-size corrections of random integer matching problems (chapter 3) and fractional ones (chapter 4). In chapter 5 I will discuss a very general relation connecting multi-overlaps and the moments of the cavity magnetization distribution. In the third part we consider random Euclidean optimization problems. I will start solving the traveling-salesman-problem (TSP) in one dimension both in its bipartite and monopartite version (chapter 6). In chapter 7 I will discuss the possible optimal solutions of the 2-factor problem. In chapter 8 I will solve the bipartite TSP in two dimensions, in the limit of large number of points. Chapter 9 contains some conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call