Abstract
In this article, a coherent detection phase-sensitive optical time-domain reflectometry (φ-OTDR) without optical amplifier using random coding method is proposed. A series of pulses modulated by random codes are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and extend the sensing distance. The code only needs one sequence for decoding, which maintains the original sensing bandwidth. Simultaneously, the coding probe pulse does not pass through any optical amplifier to avoid the transient effect. Experimental results show that the SNR of the demodulated signal is improved 14.19 dB by using 128-bit random coding pulse. In the traditional single pulse scheme with erbium doped fiber amplifier (EDFA), the intensity SNR at 25.521 km is only 5.39 dB with a 40 ns pulse width, and the vibration signal cannot be effectively demodulated. In the proposed system with the same pulse width, the external disturbance can be located successfully at 42.338 km, and the SNR of the demodulated signal is 21.5 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.